AxiaITQ™ WIRELESS ROTARY TORQUE TRANSDUCER

Introducing The Interface AxialTQ™ Torque Measurement System For Test And Production Applications

The Interface AxialTQ torque measurement system was developed in direct collaboration with over 30 end-users who shared their wish-lists for operational priorities, user interface, design, features, real-world field issues and more

AxialTQ torque measurement system redefines the category in terms of function, accuracy and customizable compatibility.

The rotor sensing element and electronics are the heart of the system which will be offered in 8 torque capacities in 5 DIN sizes. With the flexible capability of stator and output module mounting, the AxialTQ system offers an infinite number of configurations to meet any application need.

ACCURACY / DATA RATE											
Model			EX								
Accuracy C	ass	0.05									
Temp Effec	t on Zer	±0.05									
Temp Effec	t on Out	±0.05									
Data Rate (max) saı	5K									
Accuracy C	ass Out		Analog or digital								
DIN Size		Сар	acity	Material	Nominal Speed Limit (RPM)						
DIIV 312E	U.S. (II	of-in)	Metric (Nm)	Iviateriai							
100	885, 2	.21K	100, 250	Aluminum	15K						
120	4.42K,	8.85K	500, 1K	Steel	15K						
150	17.7K,	26.5K	2K, 3K	Steel	12K						
180	44.2	2K	5K	Steel	10K						
225	88.5	5K	10K	Steel	8K						
ENVIRONMENTAL											
Component	od Onor	ating D	lango	°F	+50 to +158						
Compensated Operating Range				°C	+10 to +70						
Maximum (Oporatin	a Pana		°F	+4to +158						
iviaxiiiiuiii v	operatii	ig nalig	,e	°C	-20 to +70						
Storage Rai	200			°F	-40 to +185						
Jiorage Nai	ige			°C	-40 to +85						
			ELECTR	ICAL							
Output Typ	es			Voltage, Frequency, USB							
Power Supp	oly – VD	С		24 ± 6							
			ANALOG C	UTPUT							
	10 kH	lz ± 5kH	łz	± 10 VDC							
	60 kHz	± 3Q0k	кНz	± 5 VDC							
	60 kH	z ± 20k	Hz	12 mA ± 8 mA							
			MECHAN	NICAL							
Safe Overlo	ad – % I	RO		200							
Rotor / Stat	tor	in	0.118 ± 0.078								
Axial Gap		mm	3 ± 2								
Radial Clea	rance	in	0.472								
naulai Cied	ance	mm	12								
IP Rating				IP65	;						

MODELS

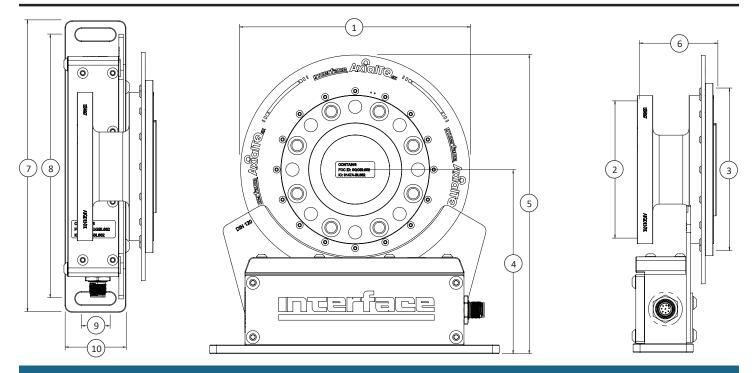
AxialTQ-EX

- Designed to minimize uncertainty while covering a broad array of torque measurement applications.
- An accuracy class of 0.05 with an axial gap and dual analog and digital simultaneous outputs.

FEATURES & BENEFITS

- Crash-Proof Design for Maximum Reliability
- Versatile Design for Application Flexibility
- Flexible Configuration
- Simultaneous Analog and Digital Outputs Enables Real-time Control and Data Collection
- Interchangeable Stators and Output Modules to Minimize Parts Inventory
- Wide Range of Standard Components to Match Any Application

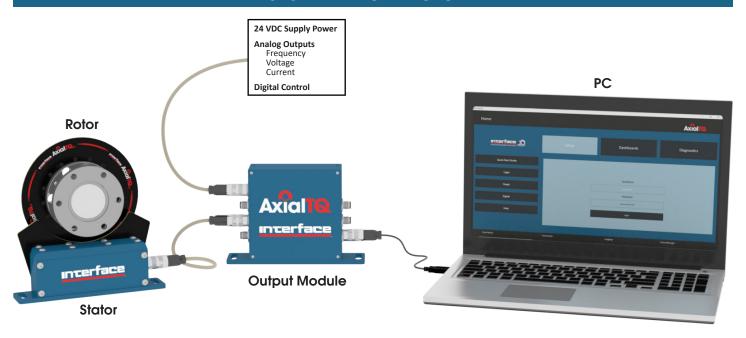
OPTIONS


- Balanced Rotor to G2.5
- Speed Sensing 60 PPR

Euro Pat App 3 662 236

International System of Units (SI) dimensions and capacities are provided for conversion only. Standard products have U.S. capacities and dimensions. SI capacities available upon special request and at an additional cost.

AxialTQ™ WIRELESS ROTARY TORQUE TRANSDUCER


DIMENSIONS

Din Size	100		120		150		180		225	
Torque Capacity	U.S. (lbf-in)	Metric (Nm)								
	885, 2.21K	100, 250	4.42K, 8.85K	500, 1K	17.7K, 26.5K	2K, 3K	44.2K	5K	88.5K	10K
See Drawing	in	mm								
(1)	6.57	167	7.28	185	8.66	220	9.60	244	11.29	287
(2)	Ø3.93	Ø100	Ø4.72	Ø120	Ø5.90	Ø150	Ø7.08	Ø180	Ø8.85	Ø225
(3)	Ø4.60	Ø117	Ø5.51	Ø140	Ø6.69	Ø170	Ø7.87	Ø200	Ø9.64	Ø245
(4)	5.23	133	5.66	144	6.33	161	6.90	175.5	7.83	199
(5)	8.54	217	9.29	236	10.66	271	11.73	298	13.50	343
(6)	2.15	54.8	2.44	62	2.44	62	2.44	62	2.44	75.7
(7)	8.26	210	8.26	210	8.26	210	8.26	210	8.26	210
(8)	7.48	190	7.48	190	7.48	190	7.48	190	7.48	190
(9)	0.78	20	0.78	20	0.78	20	0.78	20	0.78	20
(10)	1.73	44	1.73	44	1.73	44	1.73	44	1.73	44

AxialTQ™ WIRELESS ROTARY TORQUE TRANSDUCER

SYSTEM ARCHITECTURE

