RIPS ${ }^{\circledR}$ P503 FLAT ROTARY SENSOR

High-resolution angle feedback for industrial and scientific applicatior

- Non-contacting inductive technology to eliminate wear
- Angle set to customer's requirement
- Compact PCB design, durable and reliable
- High accuracy and stability

As a leading designer and manufacturer of linear, rotary, tilt and intrinsically safe position sensors, Positek ${ }^{\circledR}$ has the expertise to supply a sensor to suit a wide variety of applications.
The P503 RIPS ${ }^{\circledR}$ (Rotary Inductive Position Sensor) is a low-cost assembly designed particularly for OEM users.

Like all Positek ${ }^{\circledR}$ sensors it provides a linear output proportional with angle of rotation. Each unit is supplied with the output calibrated to the angle required by the customer, between 15 and 160 degrees.
With suitable mounting and bearings, overall performance, repeatability and stability are outstanding over a wide temperature range.
This very compact sensor, supplied as a printed circuit board sub-assembly, has a range of electrical options.
The P503 is ready to mount directly in customer's equipment. Connections to the sensor are made via solder pins.

SPECIFICATION

Dimensions

Board Outline
Board Outline
Shaft
For full mechanical details see drawing P503-11
Independent Linearity $\leq \pm 0.5 \%$ FSO @ $20^{\circ} \mathrm{C}$ - up to 100°
Temperature Coefficients
Frequency response

Resolution

Noise
Torque
Environme
Operating
Storage
Sealing
Vibration
Shock
MTBF
Drawing List
P503-11
Drawings, in AutoCAD ${ }^{\circledR}$ dwg or dxf format, available on request.

Do you need a position sensor made to order to suit a particular installation requirement or specification? We'll be happy to modify any of our designs to suit your needs please contact us with your requirements.

RIPS ${ }^{\circledR}$ P503 FLAT ROTARY SENSOR

High-resolution angle feedback for industrial and scientific applications

TABLE OF OPTIONS

CALIBRATED TRAVEL: Factory-set to any angle from $\pm 7.5^{\circ}$ to Full 360° Mechanical rotation.

ELECTRICAL INTERFACE OPTIONS

OUTPUT SIGNAL

Standard:
$0.5-4.5 \mathrm{~V}$ dc ratiometric +5 V dc nom. +0.5 V
Buffered:
Buffered:
$0.5-4.5 \mathrm{~V}$ dc
$\pm 5 \mathrm{~V}$ dc
$\pm 10 \mathrm{~V}$ dc
Supply Current
4-20mA (2 wire)
+24 V dc nom. $+18-28 \mathrm{~V}$.

$(3$ wire sink) +24 V dc nom. $+13-28 \mathrm{~V}$.	$300 \Omega @ 24 \mathrm{~V}$.
3 wire	

Sensors supplied with access to output 'zero' and 'span' calibration adjustments as standard

Angular Rotation

P503

RIPS ${ }^{\circledR}$ SERIES P503 Flat Rotary Sensor

Installation Information
 RIPS ${ }^{\circledR}$ P503 FLAT ROTARY SENSOR ASSEMBLY

Output Option	Output Description:	Supply Voltage: V_{s} (tolerance)	Load resistance: (include leads for 4 to $20 \mathrm{~mA} \mathrm{O} / \mathrm{Ps}$)
A	0.5-4.5V (ratiometric with supply)	+5V (4.5-5.5V)	$\geq 5 \mathrm{k} \Omega$
B	$\pm 5 \mathrm{~V}$	$\pm 15 \mathrm{~V}$ nom. ($\pm 9-28 \mathrm{~V}$)	$\geq 5 \mathrm{k} \Omega$
C	0.5-9.5V	+24V nom. (13-28V)	$\geq 5 \mathrm{k} \Omega$
D	$\pm 10 \mathrm{~V}$	$\pm 15 \mathrm{~V}$ nom. ($\pm 13.5-28 \mathrm{~V}$)	$\geq 5 \mathrm{k} \Omega$
E	4-20mA 2 wire Current Loop	+24V nom. (18-28V)	
F	4-20mA 3 wire Sink	+24V nom. (13-28V)	$\approx 0-950 \Omega$ max. @24V ~ 3.8 to 19 V across $950 \Omega\left\{\mathrm{R}_{\mathrm{L}}\right.$ max. $\left.=\left(\mathrm{V}_{\mathrm{s}}-5\right) / 20^{-3}\right\}$
G	0.5-4.5V	+24 V nom. (9-28V)	$\geq 5 \mathrm{k} \Omega$
H	4-20mA 3 wire Source	+24 V nom. (13-28V)	$\approx 0-300 \Omega$ max. ~ 1.2 to 6 V across 300Ω

Gain and Offset Adjustment: (Typically $\pm 10 \%$ Min available)
To adjust the gain or offset use a small potentiometer adjuster or screwdriver 2 mm across. Do not apply too much force on the potentiometers. The offset is set at mid span at the mid point, within $\pm 5^{\circ}$, of rotation.

Mechanical Mounting: By four 3.2 mm diameter holes in the printed circuit board. The sensor should be mounted with minimal axial and radial loading on the shaft for optimum life. It is recommended that the shaft is coupled to the drive using a flexible coupling. Tests indicate that, with a suitable bearing system, a life in excess of 16 million cycles can be achieved with 1 kg side and end load. The radial position of the shaft must be controlled by the customer; the end float is set by the sensor and should not be controlled by the customer.

Output Characteristic: The sensor has full rotational freedom and two sectors, 180° apart, over which linear response can be achieved. At the mid point of the calibrated range the output signal will be half full scale deflection, and the flat on the shaft is as shown. In the calibrated range the output increases as the shaft is rotated in an anticlockwise direction viewed from the shaft. The calibrated output is factory set to be between 15 and 160°.

Incorrect Connection Protection levels:-

Not protected - the sensor is not protected against either reverse polarity or over-voltage. The risk of damage should be minimal where the supply current is limited to less than 50 mA .

B \& D Supply leads diode protected. Output must not be taken outside $\pm 12 \mathrm{~V}$.
C \& G Supply leads diode protected. Output must not be taken outside 0 to 12 V .
E, F \& H
Protected against any misconnection within the rated voltage.

0.5 TO 4.5 V RATIOMETRIC

$\pm 5 \mathrm{~V}$
0.5
TO
10.5 V

$\pm 10 \mathrm{~V}$
0.5 TO 4.5 V

SUPPLY CURRENT 12 mA TYP. 20 mA MAX.
4 TO 20 mA 2 -WIRE
4 TO 20 mA 3-WRE SINK
4 TO 20 mA 3-WIRE SOURCE
SIN 20 mA 3-WIRE SOURCE 24 V VION OUTPUT COMPLIANCE $5-28 \mathrm{~V}$
SINK SOLDER PINS
$\begin{array}{ll}: 1 & +\mathrm{Ve} \\ : 2 & \text { OUTPUT }\end{array}$
$\begin{array}{ll}: 3 & \text { OV } \\ : 4 & -\mathrm{Ve} \text { - OPTIONS: B OR D }\end{array}$
RANGE OF DISPLACEMENT FROM $0-15^{\circ}$ TO $0-160^{\circ}$ e.g. 76°,
N INCREMENTS OF 1°.
SHAFT MATERIAL:- STAINLESS STEEL.
PCB MATERIAL:- FR-4, 1.6 mm THICK.
MOUNTING NOTES:
MAIN AND BUFFER CIRCUIT BOARDS ARE DOUBLE SIDED, ALLOW 3.5 mm FROM BOARD SURFACES FOR COMPONENTS. Ф3.2 MOUN ISITIOL OF THE SHAFT MUST BE CONTRO SID THE RADIAL POS CUSTOMER.
BY
THE
THE END FLOAT OF THE SHAFT IS SET BY THE SENSOR AND SHOULD NOT BE THE CUSTOMER.

LIMITED

